A game of chess is called a "massacre" if almost every move is a capture. When only the final diagram and the number of moves are given, deducing the game is a chess problem called a "massacre proof game".
Let x be the number of non-captures. The case x=2 is uninteresting because at most 4 halfmoves can be played. The table below contains information about the cases x=3,4,5. The number of pieces left on the board is of course simply 32+x-ply.
Toward the end of the table you will find some links to the corresponding chess problems. The fields inside each list of problems are:
x=3 | x=4 | x=5 | |
---|---|---|---|
ply 0 | 0 | 0 | 0 |
ply 1 | 0 | 0 | 0 |
ply 2 | 0 | 0 | 0 |
ply 3 | 5330 | 0 | 0 |
ply 4 | 1579 | 70476 | 0 |
ply 5 | 1848 | 49758 | 770912 |
ply 6 | 1948 | 79313 | 1002112 |
ply 7 | 1572 | 112297 | 2324252 |
ply 8 | 1859 | 166847 | 4079067 |
ply 9 | 2243 | 235082 | 7456474 |
ply 10 | 3718 | 351119 | 13322408 |
ply 11 | 5749 | 581588 | 23181085 |
ply 12 | 9463 | 967742 | 40867572 |
ply 13 | 14123 | 1589381 | 71471685 |
ply 14 | 20787 | 2530833 | 123150384 |
ply 15 | 29323 | 3808155 | 202209472 |
ply 16 | 43978 | 5739797 | 324453946 |
ply 17 | 64134 | 8420818 | 500029995 |
ply 18 | 90659 | 12289682 | 760082705 |
ply 19 | 121380 | 16981034 | 1099990237 |
ply 20 | 143938 | 22302528 | 1543092047 |
ply 21 | 160061 | 27038573 | 2012263317 |
ply 22 | 149259 | 29971375 | 2469906062 |
ply 23 | 133316 | 30457039 | 2761290606 |
ply 24 | 98315 | 27518641 | 2829524382 |
ply 25 | 72997 | 22702677 | 2599742382 |
ply 26 | 41924 | 16157621 | 2124497143 |
ply 27 | 23453 | 10355382 | 1522979675 |
ply 28 | 9721 | 5498926 | 928366242 |
ply 29 | 3902 | 2501639 | 473870909 |
ply 30 | 890 | 873024 | 189297438 |
ply 31 | 161 | 229895 | 56139054 |
ply 32 | 17 | 38842 | 10835051 |
ply 33 | 2 | 3516 | 1141076 |
ply 34 | 0 | 90 | 46697 |
ply 35 | 0 | 0 | 416 |
ply 36 | 0 | 0 | 0 |
To show the similarities, I'm scaling the x=3,4 graphs to the level of the x=5 graph by using some fudge factors.
back to Chess Problems by Computer